Explore hidden patterns in numbers through their factor pairs

Factor Pairs of 20

All Factor Pairs of 20

Here are all the factor pairs of 20:

(1, 20)
(2, 10)
(4, 5)

Total: 3 factor pairs

Visual Representation of Factors

These are all the factors of 20:

1
2
4
5
10
20

Properties of 20

Number Type
Abundant Number
Sum of All Factors
42
Sum of Proper Divisors
22
Total Factors
6
Prime Factorization
22 × 5
Perfect Square?
No

How to Calculate Factor Pairs of 20

Step-by-Step Process

To find all factor pairs of 20, we need to identify all integers that divide 20 evenly (with no remainder).

  1. Start with the smallest factor, which is always 1
  2. Check each integer from 1 up to the square root of 20 (v20 ≈ 4.47)
  3. For each factor found, its corresponding pair is calculated by dividing 20 by that factor

Calculation Example

Let's work through finding the factor pairs of 20:

Factor Check Division Result Factor Pair
20 ÷ 120.00Integer result(1, 20)
20 ÷ 210.00Integer result(2, 10)
20 ÷ 36.67Not a divisor-
20 ÷ 45.00Integer result(4, 5)

Explore More Factor Pairs

Check out factor pairs of these randomly selected numbers:

Number Factor Pairs Total Pairs Details
2(1, 2)1View Details
3(1, 3)1View Details
38(1, 38), (2, 19)2View Details
60(1, 60), (2, 30), (3, 20), (4, 15), (5, 12), (6, 10)6View Details
85(1, 85), (5, 17)2View Details
96(1, 96), (2, 48), (3, 32), (4, 24), (6, 16), (8, 12)6View Details

This table refreshes with new examples each time you visit.

Calculate Factor Pairs of Another Number

More About Abundant Numbers

Abundant Numbers

An abundant number is a positive integer for which the sum of its proper divisors is greater than the number itself. The number 20 is abundant because the sum of its proper divisors (22) exceeds 20.

The smallest abundant number is 12, whose proper divisors are 1, 2, 3, 4, and 6, which sum to 16.